

- Compact plug and play module with no external component required
- Can operate under 5VDC or 3VDC
- Relative Humidity and Temperature Analog Output
- Full interchangeability. No calibration required
- Can operate under 5VDC or 3VDC
- Low power consumption
- Fast response time

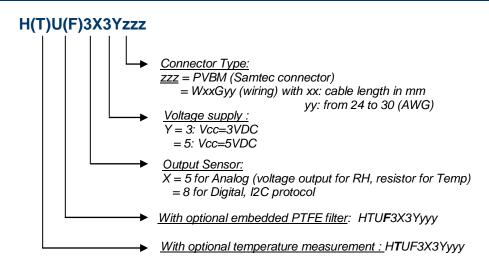
DESCRIPTION

Based on the new humidity sensor HTU21P, HTU3500 Series are dedicated humidity and temperature plug and play transducer designed for OEM applications where reliable and accurate measurements are needed. Direct interface with a micro-controller is made possible with the modules humidity linear voltage and direct NTC outputs. The HTU3500 Series are designed for high volume and demanding applications where power consumption is critical.

Optional PTFE filter/membrane (F) protects HTU3500 Series modules analog humidity modules with temperature output against dust, water immersion as well as against contamination by particles. PTFE filter/membrane preserves a high response time. Several connectors are proposed. 5VDC or 3VDC power supply products are available.

HU3500 – analog Humidity sensor only – can be proposed.

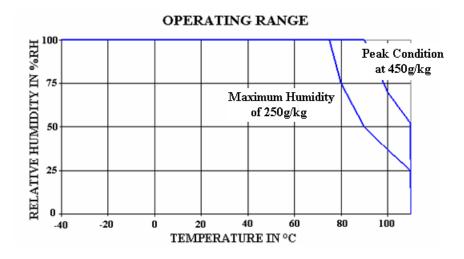
FEATURES


- Full interchangeability with no calibration required in standard conditions
- Instantaneous desaturation after long periods in saturation phase
- Analog output
- Demonstrated reliability and long term stability
- Reliability not affected by repeated condensation
- HU3500 analog humidity sensor only can be proposed

APPLICATIONS

- Home appliance
- Medical
- Printers
- Humidifier

NOMENCLATURE


PERFORMANCE SPECS

MAXIMUM RATINGS

Ratings		Symbol	Value	Unit
Storage Temperature		T _{stg}	-40 to 125	°C
Cupply Voltage (Deels)	HTU3533 products	V _{cc}	16V	V _{dc}
Supply Voltage (Peak)	HTU3535 products	Vcc	16V	V _{dc}
Humidity Operating Range		RH	0 to 100	%RH
Temperature Operating Ran	ge	Ta	-40 to +85	°C
\/DD (HTU3533 products		-0.3 to 3.6V	V
VDD to GND	HTU3535 products		-16 to 16V	V
Input current on any pin			-10 to +10	mA

Peak conditions: less than 10% of the operating time

Exposure to absolute maximum rating conditions for extended periods may affect the sensor reliability.

H(T)U(F)3500 Series

Analog Relative Humidity Module with Temperature Output

ELECTRICAL AND GENERAL ITEMS

HTU35Y3

Characteristics	Symbol	Min	Тур	Max	Unit
Voltage Supply (1) (2)	V _{cc}	2.85	3.0	3.15	V_{dc}
Nominal Output @55%RH	V _{out}		1.490		V
Humidity Average Sensitivity	ΔmV/RH	-	+16	-	mV/%RH
Current consumption	I _{cc}	-	1.0	1.2	mA dc

 ⁽¹⁾ Module is ratiometric to voltage supply
 (2) Maximum power supply ramp up time to VCC should be less than 20ms

H(T)U(F)3500 Series

Analog Relative Humidity Module with Temperature Output

HTU35Y5

Characteristics	Symbol	Min	Тур	Max	Unit
Voltage Supply (1) (2)	V _{cc}	4.75	5	5.25	V_{dc}
Nominal Output @55%RH	V_{out}	2.401	2.480	2.559	V
Humidity Average Sensitivity	ΔmV/RH	-	+26	-	mV/%RH
Current consumption	I _{cc}	-	1.2	1.5	mA dc

⁽¹⁾ Module is ratiometric to voltage supply

SENSOR PERFORMANCE

ELECTRICAL CHARACTERISTICS

(@T=23°C, $R_L>1M\Omega$ unless otherwise noted)

Humidity Characteristics	Symbol	Min	Тур	Max	Unit
Humidity Measuring Range	RH	0		100	%RH
Relative Humidity Accuracy (20% to 80%RH)			±2	See graph	%RH
Temperature coefficient (10°C to 50°C)	T _{cc}			-0.15	%RH/°C
Recovery time after 150 hours of condensation	t		10		S
Humidity hysteresis			+/-1		%RH
Output impedance	Z			50	Ω
Sink current capability (R _{L_Min} = 8 kOhms) (1)	I			1	mA
Warm up time (90% of signal)	t _w		150		ms
Time Constant (at 63% of signal) 33%RH to 75%RH (2)	τ		5	10	S

⁽¹⁾ Conditions of sink current: Vout + 0.054V (3%RH) at Vout = 0.600 V (Vout min)

⁽²⁾ At 1m/s air flow

Temperature Characteristics*	Symbol	Min	Тур	Max	Unit
Nominal resistance @ 25°C	R	9.9	10	10.1	kΩ
Beta value : B25/50	В	3346	3380	3414	K
Temperature measuring range	Ta	-40		+80	°C
Nominal Resistance Tolerance at 25°C	R _n		1		%
B value tolerance	В		1		%
Time Constant	Т		10		S

^{*} Except for low temperatures

POWER SUPPLY OPTION OF HTU3500 SERIES AT $3V_{DC}$ OR AT $5V_{DC}$

At $3V_{DC}$ or at $5V_{DC}$ power supply, there is no measurable impact of type of powering on temperature and RH accuracy.

⁽²⁾ Maximum power supply ramp up time to VCC should be less than 20ms

HUMIDITY LOOK-UP TABLES

HTU3535 Modeled Voltage Output

Output HTU3533 Modeled Voltage Output cc = 5V) Reference Output Values (Vcc = 3V)

Reference Output Values (Vcc = 5V)

RH (%)	Vout (mV)	RH (%)	Vout (mV)
10	1235	55	2480
15	1390	60	2605
20	1540	65	2730
25	1685	70	2860
30	1825	75	2990
35	1960	80	3125
40	2090	85	3260
45	2220	90	3400
50	2350	95	3530

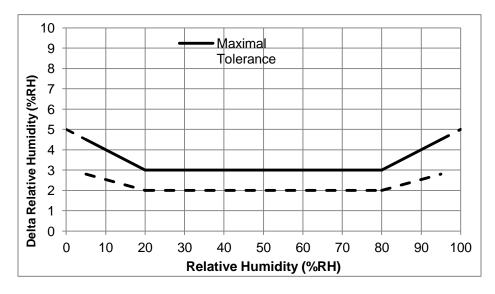
POLYNOMIAL EQUATIONS

 $V_{out} = 8.43E^{-4} RH^3 - 0.1485 RH^2 + 34.16 RH + 909$ RH = -1.564E⁻⁹ $V_{out}^3 + 1.205E^{-5}V_{out}^2 + 8.22E^{-3}V_{out} - 15.6$ with V_{out} in mV and RH in %

LINEAR EQUATIONS

 $V_{out} = 26.23 \text{ RH} + 1032$ RH = 0.03812 $V_{out} - 39.36$ with V_{out} in mV and RH in %

RH (%)	Vout (mV)	RH (%)	Vout (mV)
10	740	55	1490
15	835	60	1565
20	925	65	1640
25	1010	70	1715
30	1095	75	1795
35	1175	80	1875
40	1255	85	1955
45	1330	90	2040
50	1410	95	2120


POLYNOMIAL EQUATIONS

 $V_{out} = 5.05E^{-4} RH^3 - 8.91 E^{-2} RH^2 + 2.05 E^{-1} RH + 5.45 E^2$ $RH = 7,23 E^{-9} V_{out}^3 + 3,34 E^{-5} V_{out}^2 + 1,37 E^{-2} V_{out} - 15.6$ with V_{out} in mV and RH in %

LINEAR EQUATIONS

 $V_{out} = 15.94 \text{ RH} + 606$ $RH = 0.0627 V_{out} - 37.969$ with V_{out} in mV and RH in %

RELATIVE HUMIDITY ERROR BUDGET CONDITIONS AT 25°C

TEMPERATURE COEFFICIENT COMPENSATION EQUATION

For other temperatures than 25°C, the following temperature coefficient compensation equation can be used and will guarantee Relative Humidity accuracy given in table 1, from 0°C to 80°C:

$$RH_{compensatelT} = RH_{actualT} + f(T)$$

RHactualT Ambient humidity in %RH, computed from HTU21D(F) sensor Tactual Humidity cell temperature in °C, computed from HTU21D(F) sensor

f(T) RH correction (in %RH) is a linear function of the temperature T (°C) as

described below:

f(T) = -0.15*(25-T)

TEMPERATURE

Temperature Characteristics	Symbol	Min	Тур	Max	Unit
Nominal resistance @ 25°C	R	9.9	10	10.1	kΩ
Beta value : B25/50	В	3346	3380	3414	K
Temperature measuring range	Ta	-40		110	°C
Nominal Resistance Tolerance at 25°C	R _n		1		%
B value tolerance	В		1		%
Time Constant	T		10		S

TYPICAL TEMPERATURE OUTPUT

Depending on the needed temperature measurement range and associated accuracy, we suggest two methods to access to the NTC resistance values.

$$R_T = R_N \times e^{\beta \left(\frac{1}{T} - \frac{1}{T_N}\right)}$$

 R_T NTC resistance in Ω at temperature T in K R_N NTC resistance in Ω at rated temperature T in K

T, T_N Temperature in K

Beta value, material specific constant of NTC

e Base of natural logarithm (e=2.71828)

- \odot The exponential relation only roughly describes the actual characteristic of an NTC thermistor can, however, as the material parameter β in reality also depend on temperature. So this approach is suitable for describing a restricted range around the rated temperature or resistance with sufficient accuracy.
- ② For practical applications, a more precise description of the real R/T curve may be required. Either more complicated approaches (e.g. the Steinhart-Hart equation) are used or the resistance/temperature relation as given in tabulation form. The below table has been experimentally determined with utmost accuracy for temperature increments of 1 degree.

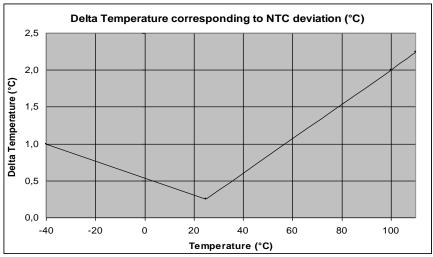
Actual values may also be influenced by inherent self-heating properties of NTCs. Please refer to MEAS-France Application Note HPC106 "Low power NTC measurement".

TEMPERATURE LOOK-UP TABLE

Temp	R
(°C)	(Ω)
-40	195652
-39	184917
-38	174845
-37	165391
-36	156513
-35	148171
-34	140330
-33	132958
-32	126022
-31	119494
-30	113347
-29	107565
-28	102116
-27	96978
-26	92132
-25	87559
-24	83242
-23	79166
-22	75316
-21	71677
-20	68237
-19	64991
-18	61919
-17	59011
-16	56258
-15	53650
-14	51178
-13	48835
-12	46613
-11	44506
-10	42506
-9	40600
-8	38791
-7	37073
-6	35442
-5	33892
-4	32420
-3	31020
-2	29689
-1	28423

Temp	R
(°C)	(Ω)
0	27219
1	26076
2	24988
3	23951
4	22963
5	22021
6	21123
7	20267
8	19450
9	18670
10	17926
11	17214
12	16534
13	15886
14	15266
15	14674
16	14108
17	13566
18	13049
19	12554
20	12081
21	11628
22	11195
23	10780
24	10382
25	10000
26	9634
27	9284
28	8947
29	8624
30	8315
31	8018
32	7734
33	7461
34	7199
35	6948
36	6707
37	6475
38	6253

Temp	R
(°C)	(Ω)
40	5834
41	5636
42	5445
43	5262
44	5086
45	4917
46	4754
47	4597
48	4446
49	4301
50	4161
51	4026
52	3896
53	3771
54	3651
55	3535
56	3423
57	3315
58	3211
59	3111
60	3014
61	2922
62	2834
63	2748
64	2666
65	2586
66	2509
67	2435
68	2364
69	2294
70	2228
71	2163
72	2100
73	2040
74	1981
75	1925
76	1870
77	1817
78	1766
79	1716


Temp	R	
(°C)	(Ω)	
80	1669	
81	1622	
82	1578	
83	1535	
84	1493	
85	1452	
86	1413	
87	1375	
88	1338	
89	1303	
90	1268	
91	1234	
92	1202	
93	1170	
94	1139	
95	1110	
96	1081	
97	1053	
98	1026	
99	999	
100	974	
101	949	
102	925	
103	902	
104	880	
105	858	
106	837	
107	816	
108	796	
109	777	
110	758	

6039

39

TEMPERATURE ERROR BUDGET

0.1°C tolerance on Resistance Measurement

STEINHART-HART COEFFICIENTS

According to the equation below, the Steinhart-Hart coefficients for the operating temperature range for HTU3500 products thermistor are:

$$\frac{1}{T} = a + b * \ln(R) + C * \ln(R) * \ln(R) * \ln(R)$$

R NTC resistance in Ω at temperature T in K

T Temperature in K

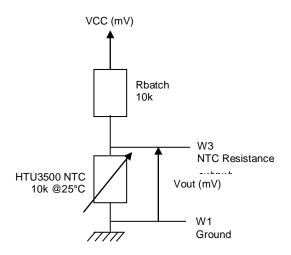
a Constant value (a= 8.61393E-04)

b Constant value (b= 2.56377E-04)

c Constant value (c= 1.68055E-07)

TEMPERATURE INTERFACE CIRCUIT

Concerning the temperature sensor of the HTU3500 Series products, the following measuring method described below is based on a voltage bridge divider circuit. It uses only one resistor component (Rbatch) at 1% to design HTU3500 temperature sensor interfacing circuit.


Rbatch is chosen to be equal to NTC @25°C to get: Vout = Vcc/2 @25°C.

The proposal method connects Rbatch to Vcc and NTC to Ground. It leads to a negative slope characteristic (Pull-Up Configuration).

For HTU3533 For HTU3535

Analog Relative Humidity Module with Temperature Output

$$V_{OUT}(mV) = \frac{Vcc(mV)*NTC_{HTU3500}(\Omega)}{R_{batch}(\Omega) + NTC_{HTU3500}(\Omega)}$$

		products (VCC=3VDC)	products (VCC=5VDC)
Temperature (°C)	Resistance (Ω)	Pull-Up Configuration Vout (mV)	Pull-Up Configuration Vout (mV)
-40	195652	2854	4757
-30	113347	2757	4595
-20	68237	2617	4361
-10	42506	2429	4048
0	27219	2194	3657
10	17926	1926	3210
20	12081	1641	2736
25	10000	1500	2500
30	8315	1362	2270
40	5834	1105	1842
50	4161	882	1469
60	3014	695	1158
70	2228	547	911
80	1669	429	665
85	1452	380	634

Storage Conditions and Handling Instructions

It is recommended to store HTU3500 Series sensor in its original packaging at following conditions: Temperature shall be in the range of $-40^{\circ}C - 125^{\circ}C$.

APPLICATION: DEW POINT TEMPERATURE MEASUREMENT

The **dew point** is the temperature at which the water vapor in the air becomes saturated and condensation begins.

The dew point is associated with relative humidity. A high relative humidity indicates that the dew point is closer to the current air temperature. Relative humidity of 100% indicates that the dew point is equal to the current temperature (and the air is maximally saturated with water). When the dew point stays constant and temperature increases, relative humidity will decrease.

Dew point temperature of the air is calculated using Ambient Relative Humidity and Temperature measurements from HTU3500 Series sensor with following formulas given below:

Partial Pressure (PP_{Tamb}) formula from Ambient Temperature:

$$PP_{Tamb} = 10^{\left[A - \frac{B}{(Tamb + C)}\right]}$$

Dew point Temperature (T_d) formula from Partial Pressure (PP_{Tamb}):

$$T_{d} = -\left[\frac{B}{\log_{10}\left(RH_{amb} \times \frac{PP_{Tamb}}{100}\right) - A} + C\right]$$

PP_{Tamb} Partial Pressure in mmHg at ambient temperature (T_{amb})

RH_{amb} Ambient humidity in %RH, computed from HTU3500 Series sensor Humidity cell temperature in °C, computed from HTU3500 Series sensor

T_d Calculated Dew Point in °C

A, B, C Constants: A=8.1332; B=1762.39; C=235.66

CONNECTING AND MECHANICAL CHARACTERISTRICS

CONNECTING CHARACTERISTICS

Connector Type*	Symbol	Overview	Connector Pitch	Mating Connector
Medium Male Connector ^{(1) (2)} (1.91 mm – 0.075 in long)	PVBM	181365	(2,00) .0787 (2,00) .0787 (2,00) .0787 (0,50 × 0,50) .020 × .020	Direct Soldering (through hole)

^{*} For alternate connector type, please contact factory.

Pin Out Assignment

N°	Function
1/8	Ground
2/7	Vcc – Voltage Supply
3/6	Tout - Temperature
4/5	RHout – Relative Humidity

⁽¹⁾ For board-to-board mounting, we suggest wave soldering.

⁽²⁾ Pins are connected by twos.

WIRING CHARACTERISTICS

Connector Type	Symbol	Overview	More information*	Remote Mating Connector*
N/A	WxxGyy	A T. T. Salar	Wxx: Wiring cable length* in mm Gyy: Wiring cable type* (from AWG 24 to 30):	N/A

^{*} On request, please contact factory.

Pin Out Assignment (with wires)

N°	Colour	Function
1	Black	Ground
2	Red	Vcc – Voltage Supply
3	Brown	Tout – Temperature
4	Yellow	RHout – Relative Humidity

RESISTANCE TO PHYSICAL AND CHEMICAL STRESSES

HTU3500 series modules have been tested according to table below:

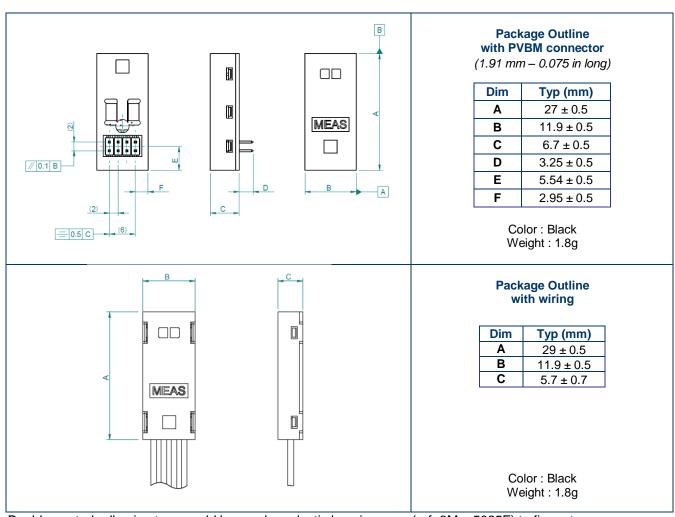
Environment	Standard	Results	
Salt atmosphere	JESD22-A107-A	Within specification	
Temperature cycling	-20°C / +85°C, 168 hours	Within specification	
Thermal shocks	-20°C / +85°C, 500 cycles	Within specification	
High temperature / Humidity operating life	93%RH / +60°C, 168 hours	Within specification	
Resistance to immersion into water	Ambient temperature	Within specification	
Low temperature storage	-20°C, 500 hours	Within specification	
High temperature storage	+85°C, 500 hours	Within specification	
ESD immunity	JEDEC JESD22-A114 JEDEC JESD22-A115	Within specification* Within specification**	

^{*} JEDEC JESD22-A114 method for connections & open window (Human Body Model at ±8kV powered and unpowered)

HTU3500 Series are protected against reverse polarity.

HTU3500 Series are not light sensitive.

^{**}JEDEC JESD22-A115 method (Machine Model ±200V)


ENVIRONMENTAL AND RECYCLING

HTU3500 series modules are lead free components and are compatible with Pb Free soldering process.

HTU3500 series modules are free from Cr (6+), Cd and Hg.

PACKAGE OUTLINE

MECHANICAL CHARACTERISTICS: HTU3500 SERIES PACKAGE OUTLINE

Double coated adhesive tape could be used on plastic housing area (ref: 3M – 5925F) to fix parts.

ORDERING INFORMATION

Product	Order Reference	Status
HTU3515WXGY	HPP831NXXX	In design
HTU3535WXGY	HPP831CXXX	Engineering part
HTU3535PBVM	HPP831A610	Serial part
HTU3535CH	HPP831AXXX	In design

Customer Service contact details

北京赛斯维测控技术有限公司 北京市朝阳区望京西路48号

金隅国际D座302

电话: +86 010 8477 5646 传真: +86 010 5894 9029 邮箱: <u>sales@sensorway.cn</u> http://www.sensorway.cn

Revision	Comments	Who	Date
0	Document creation	D. LE GALL-ZIRILLI M.ROBERT	December 13
1	Ordering information update	M.ROBERT	September 14

The information in this sheet has been carefully reviewed and is believed to be accurate; however, no responsibility is assumed for inaccuracies. Furthermore, this information does not convey to the purchaser of such devices any license under the patent rights to the manufacturer. Measurement Specialties, Inc. reserves the right to make changes without further notice to any product herein. Measurement Specialties, Inc. makes no warranty, representation or guarantee regarding the suitability of its product for any particular purpose, nor does Measurement Specialties, Inc. assume any liability arising out of the application or use of any product or circuit and specifically disclaims any and all liability, including without limitation consequential or incidental damages. Typical parameters can and do vary in different applications. All operating parameters must be validated for each customer application by customer's technical experts. Measurement Specialties, Inc. does not convey any license under its patent rights nor the rights of others.